Triclosan impairs excitation–contraction coupling and Ca^{2+} dynamics in striated muscle

Gennady Cherednichenko, Rui Zhang, Roger A. Bannister, Valeriy Timofeyev, Ning Li, Erika B. Fritsch, Wei Feng, Genaro C. Barrientos, Nils H. Schebb, Bruce D. Hammock, Kurt G. Beam, Nipavan Chiamvimonvat, and Isaac N. Pessah

Department of Molecular Biosciences, School of Veterinary Medicine, Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Physiology and Biophysics, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045; and Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655

Contributed by Bruce D. Hammock, July 13, 2012 (sent for review June 18, 2012)

Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation–contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 μM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrophysiologically evoked ECC within ~10–20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca^{2+} transients followed by complete failure of ECC, independent of Ca^{2+} store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca^{2+} entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca^{2+} currents of cardiac and skeletal muscle, and [3H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [3H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca^{2+} and RyR channels in skeletal muscle, and L-type Ca^{2+} entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.

cachexia | calcium regulation | heart failure | muscle contraction | L-type current

Triclosan [5-chloro-2-(2,4-dichlorophenoxo)phenol; TCS] is a bactericide found in many personal care products and has been incorporated into cleaning supplies, bedding, clothes, fabrics, shoes, carpets, plastics, and medical devices (1–3). Introduced over 40 y ago, TCS production has dramatically increased over the past two decades, exceeding 1 million pounds produced annually when assessed in 1998 by the US Environmental Protection Agency (USEPA) (1). Based on the available data, TCS is well tolerated following oral or dermal exposure, and several aspects of safety have been assessed in animal models (2). However, TCS has been detected in raw and treated waste water, natural streams, sewage sludge, fish, and human samples of urine, plasma, and breast milk (4–9), raising concerns of its potential long-term adverse impacts on environmentally sensitive species and human health. There is emerging evidence that TCS can disrupt endocrine signaling and immune function, inhibit carboxylesterase activity, bioaccumulate in organisms, and cause bacterial resistance (10–15).

Structurally TCS, a polychlorinated diphenyl ether, shares chemical properties with nondioxin-like persistent organic pollutants, such as the hydroxylated metabolites of ortho-substituted polychlorinated biphenyls (PCBs) and polynbrominated diphenyl ethers (PBDEx). Receptor-based screens (12, 16) revealed that similar to PCBs (17) and PBDEs (18), TCS has potential for direct interaction with type 1 and type 2 ryanodine receptors (RyR1 and RyR2), supporting a possible convergent mechanism of action among structurally related noncoplanar halogenated persistent organic pollutants. Despite extensive analysis of TCS efficacy and toxicity, the potential of TCS to alter cardiac and skeletal muscle physiology have not been previously reported (2). Considering that RyRs are intracellular channels that mediate the release of Ca^{2+} from the sarcoplasmic reticulum (SR), necessary for excitation–contraction coupling (ECC) in skeletal and cardiac muscle, alteration in ECC by TCS may promote acute or long-term impacts on muscle health in human populations and environmentally sensitive species. Moreover, mutations in the RyR1 gene are linked to dysregulated Ca^{2+} homeostasis in heritable diseases of skeletal muscle, including malignant hyperthermia and central core disease (19, 20), and aging related muscle weakness (21). Mutations in the RyR2 gene are responsible for arrhythmogenic disorders, including catecholaminergic polymorphic ventricular tachycardia and arrhythmogenic right ventricular dysplasia type 2 (20, 22), and are etiological contributors to ischemic heart failure (23). Considering the critical role of RyR channels in muscle physiology and pathophysiology, we deemed it necessary to investigate whether TCS has the potential of impairing ECC of cardiac and skeletal muscle in vivo and in vitro to better assess the potential risks associated with its pervasive use.

Results

TCS Depresses Cardiac Hemodynamics and Skeletal Muscle Contractility in Vivo. Whether acute exposures to TCS were capable of altering functional parameters of striated muscle were investigated using three in vivo tests. First, anesthetized mice instrumented with a pressure-sensitive catheter were exposed to a single intraperitoneal dose of TCS (6.25, 12.5, or 25 mg/kg) or an equal volume of vehicle (20% vol/vol DMSO in saline, 200 μL). In contrast to vehicle control, mice receiving TCS showed significantly impaired hemodynamic functions within 10 min of exposure in a dose-dependent manner. Cardiovascular impairments included significantly reduced cardiac output, lower left ventricular end-diastolic pressure, and reduction in the maximum time-derivative of the left ventricular pressure development (Fig. 1A). Of note, the highest-dose group (25 mg/kg) exhibited a 25.3 ± 15.7% decrease in
cardiac output, implying that TCS was capable of eliciting severe cardiovascular impairments. The administration of TCS to mice led to dose-dependent plasma levels of unconjugated TCS, with up to 0.31 ± 0.09 μM detected in the samples from the 25-mg/kg dose group (Fig. S1).

Second, skeletal muscle function was assessed using a grip-strength meter by measuring the total force produced by the limbs of mice at test times up to 60 min after a single 40 mg/kg i.p. TCS dose. Normalized to predose baseline, TCS-treated animals had a mean decrease of 18% [95% confidence interval (CI): 12.0–24.0%] in grip strength, which was significantly lower than both sham- and vehicle-injected groups (Fig. 1B). No statistical difference was seen between sham- and vehicle-injected groups. These impairments were transitory and exposed mice recovered grip strength comparable to baseline 24 h after dosing.

Third, the fathead minnow (Pimephales promelas) has been extensively used as model organism to study the potential impacts of aquatic pollutants on teleost (24). Considering the pervasive nature of TCS in the aquatic environment, and TCS-mediated impairments detected in mammalian striated muscle, we investigated whether TCS adversely affected fish swimming performance. Larval fathead minnow were exposed to TCS (0.035, 0.26, or 0.52 μM) for up to 7 d and swimming performance assessed at test termination. At the highest TCS concentration tested, swimming activity, as well as predator avoidance and endurance, were significantly reduced when measured as total distance swam during nonprovoked swimming (Fig. 1C, bar graph) and the number of lines crossed during a forced swim test (Fig. 1C, line graph), respectively. Minnows exposed to 0.26 μM TCS exhibited reduced nonprovoked and forced swimming behavior, although the magnitude of these impairments did not reach statistical significance (Fig. 1C).

TCS Impairs ECC in Vitro. The molecular mechanisms responsible for the impairments in muscle performance observed in vivo were investigated using primary cells isolated from murine cardiac and skeletal muscle. Cardiomyocytes were isolated from excised naive mouse hearts, loaded with the fluorescent Ca2+ indicator Fluo-4, and electrically paced at 1 Hz to evoke Ca2+ transients. After 20 min of exposure to 10 μM TCS, the evoked Ca2+ transients were greatly decreased with normalized peak amplitudes reduced by 79.3 ± 5.2%, compared with cells exposed to equivalent vehicle as control (Fig. 2A). L-type Ca2+ entry through Ca1.2 (also termed the dihydropyridine receptor; DHPR) is essential for initiating cardiac ECC through a process termed Ca2+-induced Ca2+-release mediated as a consequence of RyR2 activation (25). Using the same TCS exposure protocol, voltage-clamped cardiomyocytes showed that 20 min after exposure to 10 μM TCS the peak L-type Ca2+ current was attenuated by 54.4 ± 9.6% compared with cardiomyocytes exposed to vehicle (Fig. 2B, Center), and the inactivation time constant was prolonged from 25.8 ± 2.0 ms to 45.2 ± 3.6 ms (Fig. 2B, Right).

The acute influences of TCS on ECC were assessed in more detail with mouse embryonic skeletal muscle cells (myotubes). Myotubes were stimulated with a standardized protocol that included electrically pulse trains ranging from 0.1 to 20 Hz over an ~30-min test period. As shown in Fig. 3A (Top), perfusion of vehicle had no measurable influence on the amplitude or kinetics of Ca2+ transients applied during the protocol. However, inclusion of TCS (0.5 μM) in the perfusate caused a gradual rise in baseline Ca2+ and significantly potentiated the maximum amplitude (corrected for baseline) of electrically evoked Ca2+ transients for the duration of the experiment (Fig. 3A, Middle). In contrast, 1 μM TCS initially potentiated Ca2+ transient amplitudes but invariably produced a subsequent diminution and eventual loss of electrically evoked Ca2+ transients (Fig. 3A, Bottom). The rapidity with which ECC was lost was highly dependent on the TCS concentration,
with 10 μM TCS causing a complete failure of ECC within ~10 min (Fig. 3B; see also Fig. 6). Myotubes exposed to TCS for 24 h before testing ECC revealed the drug’s higher potency with longer (subacute) exposures. Exposure to as low as 0.1 μM TCS enhanced myotube Ca2+ transient amplitudes at ≥10 Hz stimuli, although this effect did not reach statistical significance. Nevertheless, TCS (0.5 μM) caused a significant depression of Ca2+ transient amplitudes at ≥5 Hz stimulus frequencies tested (Fig. 3C).

Acute exposure to TCS (10 μM) also caused a rapid failure of ECC in flexor digitorum brevis (FDB) muscle fibers isolated from adult mice (Fig. S2A), without causing either an initial increase in baseline Ca2+ or a potentiation of the Ca2+ transient amplitude, as was observed with myotubes. Subacute (24 h) exposure to lower TCS (0.5 μM) significantly reduced the number of responsive FDB fibers by 44.7 ± 8.6% (Fig. S2B).

TCS is known to tightly bind serum protein (2), and we therefore tested if the presence of BSA could prevent its acute actions on ECC in myotubes. BSA perfused in the imaging buffer at either 0.1% or 0.5% (final concentration) did not alter EC coupling responses (Fig. S3A). Even in the presence of 0.1% BSA, TCS (10 μM) impaired ECC in 66% of the cells (Fig. S3B), whereas TCS in the presence of 0.5% BSA impaired ECC in 22% of myotubes treated with 10 μM TCS (Fig. S3C). In all cases, however, serum albumin was unable to repress increases in resting Ca2+ levels, indicating that serum proteins alone cannot fully abate the adverse effects of TCS in myotubes.

In contrast to cardiac ECC, L-type Ca2+ entry through Ca1.1 is not required for initiating skeletal muscle ECC (26, 27). Instead, a form of conformational coupling engages bidirectional signaling between the voltage sensor of Ca1.1 and RyR1 activation (28, 29). Exposure to 10 μM TCS for 10 min before measuring Ca2+ current attenuated peak L-type Ca2+ current by nearly threefold compared with myotubes exposed to vehicle control (Fig. 4B, Left), and also caused a ~fourfold acceleration of inactivation (Fig. 4B, Right). Although Ca2+ entry through Ca1.1 is not necessary to initially trigger ECC in skeletal muscle cells, the entry of Ca2+ through a mechanism requiring Ca1.1 appears to be essential for maintaining Ca2+ stores during prolonged physiological stimuli in a process termed excitation-coupled Ca2+ entry (ECCE) (30, 31). We therefore tested if TCS interfered with myotube ECCE using two approaches. First, ECCE was measured as the rate of quench of cytoplasmic Fura-2 fluorescence as extracellular Mn2+ enters the myotube in response to a train of electrical pulses (40 Hz). As shown in Fig. 5A, 10 μM TCS caused a complete block of ECCE. Second, myotubes were pretreated with 500 μM ryanodine (30 min) to block RyR1, which was verified by the loss of responses to challenge with caffeine. In contrast to control cells that responded to a 40-Hz electrical pulse with a large Ca2+ entry, myotubes exposed to TCS (10 μM) failed to respond to an electrical pulse train (Fig. 5B). Importantly, inhibition of ECCE appears to be a selective action of TCS because it failed to inhibit store-operated Ca2+ entry (SOCE) subsequent to depletion of SR Ca2+ stores by thapsigargin (Fig. S4).

Molecular Targets of TCS-Mediated ECC Impairment. ECC in skeletal muscle invariably relies on bidirectional signaling between Ca1.1 and RyR1, which form a conformationally coupled unit. To further investigate whether TCS directly targets Ca1.1, RyR1, or both, we investigated its mechanism of action in wild-type and dyspedic (RyR1-null) myotubes. In addition to sequentially potentiating then blocking ECC, TCS (10 μM) caused a pronounced although transient rise in resting Ca2+ (Fig. 5A). After recovery to a slightly elevated baseline, brief challenge with caffeine (20 mM) produced a Ca2+ transient, the magnitude of which was not different compared with the caffeine response before TCS (area under curve = 72.5 ± 6.3 × 106 units before TCS treatment vs. 60.3 ± 8.3 × 106 units after TCS treatment; n = 9, P = 0.26), indicating that TCS causes ECC failure without depleting SR Ca2+ stores nor by block of RyR1 activity. Moreover, the loss of ECC in skeletal myotubes exposed to TCS was not the result of Na+ channel block because depolarization of the myotube surface membrane with externally applied K+ (40 mM) failed to elicit a Ca2+ transient (Fig. 6A, Inset). Dyspedic

![Fig. 3. TCS impairs skeletal ECC. (A) Mouse skeletal myotubes were loaded with the Ca2+ indicator Fluo-4 and electrically stimulated. Compared with vehicle (0.1% DMSO; Top) perfusion, 0.5 μM TCS significantly potentiated Ca2+ transient amplitudes (Middle). A similar potentiation was initially seen with 1 μM TCS, but this invariably led to the diminution and complete abrogation of electrically evoked Ca2+ transients (Bottom). (B) The effect of TCS on ECC is highly dose-dependent, with 10 μM causing rapid ECC failure within 12.5 min. All TCS exposures significantly altered the Ca2+ transient response to single electrical test pulses (P < 0.01). Error bars represent SEM. (C) Exposure to submicromolar TCS for 24 h was sufficient to alter transient amplitudes in myotubes, with 0.5 μM TCS producing significant reductions at 5–40 Hz stimulus frequencies. Error bars represent SEM. *P < 0.05; **P < 0.01; ***P < 0.001, two-way ANOVA.](http://www.pnas.org/cgi/content/full/1211314109/1)

![Fig. 4. TCS attenuates skeletal muscle L-type Ca2+ current. (A) Averaged recordings of L-type Ca2+ currents elicited by 2-s depolarizations from −50 mV to +30 mV are shown for untreated normal myotubes (black circle, n = 4) or normal myotubes exposed to 10 μM TCS for 15–20 min at ~25 °C (gray circle, n = 9). (B) Summary of peak current densities (Left) and τ2 values (Right) for myotubes in the presence and absence of 10 μM TCS. τ2 is ratio of the current remaining at 2 s to the peak current. Error bars represent SEM. ***P < 0.001, t test.](http://www.pnas.org/cgi/content/full/1211314109/2)
myotubes did not respond to 10 μM TCS, as did RyR1-expressing myotubes (compare wild-type and dyspedic in Fig. 6B), indicating that TCS directly targeted RyR1 to produce a transient rise in baseline Ca\(^{2+}\). In support of this interpretation, direct radioligand-receptor binding analysis showed that TCS (1–20 μM) significantly enhanced specific \(^{3}H\)ryanodine binding to mouse skeletal muscle membrane preparations in a concentration-dependent manner (Fig. 6C). Specific binding of \(^{3}H\)PN200, a dihydropyridine that binds specifically to high-affinity sites on DHPR in skeletal muscle membrane preparations, was inhibited by TCS in a concentration-dependent but non-competitive (allosteric) manner (Fig. 6C).

Discussion

We report that TCS is capable of disrupting ECC in both cardiac and skeletal muscle, resulting in impaired grip strength and hemodynamics, and mobility in a model fish species. These results were unexpected given the extensive toxicological testing of TCS recently reviewed (2). In fact, there is a dearth of information regarding the myotoxicity of TCS and its potential impacts on human and environmental health. An earlier study reported TCS to have an inhibitory effect on the excitability of rat phrenic nerve-diaphragm preparations; however, the mechanisms behind these findings were not explored and the study was largely ignored (32). Our present findings identify a potential for TCS to impair physiological muscle functions in vivo and identify proteins essential for ECC as targets, namely Ca\(_{1,1}\), Ca\(_{1,2}\), and RyR channels.

The molecular mechanisms by which TCS impairs ECC in skeletal muscle appear to stem from a unique functional dissociation (uncoupling) of bidirectional signaling between Ca\(_{1,1}\) and RyR1 Ca\(^{2+}\) release units (CRUs). Several observations support that TCS functionally disrupts ECC by selective inactivation of RyR1 in the same concentration range; (i) TCS, even at high concentration (10 μM), fails to block RyR1 channels (myotubes remain responsive to caffeine and \(^{3}H\)ryanodine binding is enhanced); (ii) The loss of ECC can be demonstrated even with external additions of K\(^+\) to depolarize the myotubes, which bypasses the Na\(^+\) action potential; (iii) TCS influences \(^{3}H\)PN200 binding to DHPR in a non-competitive manner and enhances \(^{3}H\)ryanodine binding to RyR1 in the same concentration range; (v) The TCS-modified skeletal L-type Ca\(^{2+}\) current is reduced in density; (vi) The transient rise in basal Ca\(^{2+}\) caused by TCS is dependent on RyR1 expression and tightly coincides with loss of ECC and ECCE, but not SOCE, suggesting that TCS influences both proteins at sites critical for CRU interactions. Regardless of the exact molecular mechanisms leading to loss of CRU function, impairment of bidirectional signaling in even a fraction of skeletal muscle CRUs would be expected to result in weakened contractility, promoting fatigue, sarcopenia, or cachexia, a conclusion verified in grip-strength measurements made following acute exposure to TCS. Prolonged increases in cytosolic Ca\(^{2+}\) have been shown to promote contractile fatigue in adult skinned muscle fibers and ECC failure (33, 34). Our current results in adult FDBs; however, myotubes indicate that at lower concentrations (≤1 μM) of TCS impairs CRU functions without overtly promoting chronically elevated cytoplasmic Ca\(^{2+}\), suggesting TCS-mediated CRU dysfunction is mediated by a unique mechanism that chemically interferes with CRU function.

TCS also interferes with cardiac ECC, even though cardiac CRUs have fundamental differences in physical organization and functional coupling between Ca\(_{1,1}\) and RyR2. The activation of RyR2 depends solely on Ca\(^{2+}\) entry through Ca\(_{1,2}\), and block of Ca\(^{2+}\) entry prevents RyR-mediated Ca\(^{2+}\) release. Because TCS reduces Ca\(_{1,2}\) current by ~50%, direct block of L-type Ca\(^{2+}\) current may represent the primary mechanism by which TCS impairs cardiac ECC. TCS also retards inactivation of Ca\(_{1,2}\), an action that is likely secondary to Ca\(^{2+}\) transient attenuation, because RyR2-mediated Ca\(^{2+}\) release from the SR plays major feedback role in the inactivation of L-type Ca\(^{2+}\) current (35). Indeed, the in vitro effects of TCS on cardiac ECC are further supported by the in vivo analyses using hemody-

Cherednichenko et al. PNAS | August 28, 2012 | vol. 109 | no. 35 | 14161
namic monitoring. TCS results in a suppression of the maximal left ventricular pressure development in a dose-dependent manner. This effect is associated with a significant reduction in cardiac output.

Dysregulation of cardiac ECC has been implicated in heart failure, cardiac arrhythmias, and cardiomyopathies (36). A prominent comorbidity of heart failure with poor prognosis is cachexia (37). TCS-mediated ECC failure could promote adverse cardiac outcomes, especially in such susceptible populations with mutations in CRU proteins known to confer stress-triggered arrhythmias.

Commensurate with the increased production of TCS over the past four decades (1–3) are increased exposures, as evidenced in human samples of urine, plasma, and breast milk (7–9). Typical routes of exposure to TCS (oral, dermal) are sufficient in bringing the compound into systemic circulation (38, 39). Importantly, one study reported plasma C_{max} of nearly 1 μM within 1–3 h after administering a 4-mg oral dose in human subjects (38). Our acute in vivo experiments were aimed at understanding mechanisms and potential risks, and therefore used an intraperitoneal route of exposure. However, the exposures tested here produced TCS blood plasma concentrations consistent with levels found in some humans. Therefore, disruption of ECC in TCS in both humans and environmentally sensitive species (e.g., unappreciated risk factors associated with pervasive exposures to skeletal and cardiac muscle may also inform about previously levels found in some humans. Therefore, disruption of ECC in these recent dynamics. Considering that exposures to TCS are pervasive, unappreciated risk factors associated with pervasive exposures to TCS in both humans and environmentally sensitive species (e.g., fish). TCS has been detected in sewage sludge and sediment, as well as in organisms ranging from algae to fish to dolphins (3, 6). Using fathead minnows as a marker for aquatic toxicology, Schultz et al. recently reported that TCS decreased aggression and predator-avoidance performance in the minnow (40). Consistent with this report, our study revealed a negative impact on swimming performance in larval fathead minnows exposed to TCS, an effect attributable to perhaps a combination of both cardiac and skeletal muscle impairments. In this regard, recent studies have found TCS in both raw and treated drinking water, as well as in >60% of streams across 30 states (1, 4, 5), suggesting that ecosystems are also impacted by exposure to this high-volume chemical.

In mammals, TCS is primarily metabolized to glucuronide and sulfate conjugates, yet details regarding the extent of conjugation have been equivocal. Reports about human exposure range from very little or no detectable levels of parent compound to 38% unconjugated after oral ingestion of TCS (2, 38, 41). The basis for this discrepancy is not known, but a possible explanation may involve disparate glucuronidation or sulfation capacities in the subjects tested. Indeed, UDP-glucuronosyltransferases are highly polymorphic (42) and genetic disorders, like Gilbert-Meulengracht syndrome, which affects 5–10% of the population, can lead to decreased UDP-glucuronosyltransferase activity (43). Overall, these genetic variations could dramatically influence the capacity to clear TCS from systemic circulation by conjugation. Thus, a segment of the human population with impaired phase II metabolism might be at a higher risk of adverse TCS effects described in this article. Plasma protein binding has been suggested to mitigate the possible effects of TCS, because more than 95% of the compound is protein-bound in human blood (2). However, our results demonstrated that TCS disrupts skeletal ECC even in the presence of excess serum protein.

In conclusion, we show that TCS potently impairs striated muscle ECC by interfering with signaling between DHPR and RyR, resulting in weakened contractility and depressed hemodynamics. Considering that exposures to TCS are pervasive, these recent findings may present a concern to both human and environmental health.

Materials and Methods
More detailed descriptions can be found in SI Materials and Methods.
ACKNOWLEDGMENTS. This work was supported by National Institutes of Health Grants R01 AR52354 (to L.N. and K.G.B.), R01 ES011269 (to L.N.P.), R01 AR055104 (to K.G.B.), R01 ES002710 (to B.D.H.), and R01 HL85727, R01 HL85844, and VA Merit Grant 5 I01BX000576 (to N.C.); Muscular Dystrophy Association Grant 176448 (to K.G.B.) and 732 HL63590 (to N.C.), and the J. B. Johnson Foundation (I.N.P.). B.D.H. is a George and Judy Marcus Senior Fellow of the American Asthma Society.
Supporting Information

Cherednichenko et al. 10.1073/pnas.1211314109

SI Materials and Methods

Hemodynamic Measurement. Hemodynamic measurement was performed as described previously (1). In brief, 8- to 10-wk-old male C57BL/6 mice were anesthetized with ketamine/xylazine (80 and 5 mg/kg, respectively). The neck and chest area was shaved and mice were carefully moved to the heating pad with a servo-controlled homeothermic blanket using a rectal temperature feedback probe. The desired body temperature was set to 37 °C. An inverted T-shaped middle-neck incision from mandible to the sternum was made. The parotid glands were moved aside and blunt dissection of the thin muscle layer around the throat was performed to expose and isolate the right carotid artery. The carotid artery was separated from the vagus nerve and a miniature pressure-volume (PV) catheter (SPR-839; Millar Instruments) was inserted via the carotid artery tip into the left ventricle. The PV signals were acquired using the Millar PV system (MPVS-300, PowerLab 4/30 with Chart Pro; AD Instruments). After stabilization of the signal for 10–15 min, the baseline PV [loops at a steady state were recorded followed by intraperitoneal administration of 100, 50, 25, or 12.5 mg/kg of triclosan (TCS) or vehicle]. PV loops were recorded after 15 min of drug administration. A stock of TCS was prepared in DMSO and diluted [20% (vol/vol)] into saline to give a total volume of 200 μL before injection. Before and after treatment, measurements were compared using one-tailed paired t tests.

Determination of TCS Concentration in Mouse Plasma. TCS analysis was performed by online solid-phase extraction (SPE)-LC-MS on an Agilent 1200 LC system coupled to a ABI 4000 TRAP tandem mass spectrometer (MS/MS) equipped with a pneumatically assisted electrospary-ionization (ESI) source (Applied Biosystems). The SPE-LC analysis was carried out as described for triclocarban (2), using a Cyclone RP-18 column (50 × 0.5 mm, 50 μm; Thermo Fisher Scientific) as SPE column and a Kinetex C18 reverse-phase separation column (50 × 2.1 mm, 10 nm; Phenomenex). Separation was carried out with water containing 25 mM ammonium acetate and 0.1% acetic acid as solvent A and acetonitrile/water [95%/5% (vol/vol)] as solvent B. The flow rate for separation was set to 350 μL/min and the following gradient was used: 0.0–0.5 min isotropic 55% B; 0.5–0.7 min linear from 55% B to 100% B; 0.7–1.8 min isotropic 100% B and return to initial conditions at 1.9 min. TCS and its internal standard (IS) (2H5)-TCS were detected after negative ESI in selected reaction monitoring mode on the transitions of m/z 287/35 and m/z 292/35 with a dwell time of 50 ms. The instrument was operated with an ion-spray voltage of –4,500 V, using 25 psi curtain gas, 40 psi nebulizer gas, and 71 psi drying gas at a temperature of 500 °C and collision energy of –42 V.

Sample preparation was carried out by mixing mouse plasma with IS solution in ACN yielding a final IS concentration of 50 nM. Following mixing and centrifugation (14,000 × g for 4 min at 4 °C), 20 μL of the mixture were directly analyzed by online SPE-LC-MS.

TCS coeluted perfectly with the IS at a retention time of 1.51 ± 0.03 min in narrow peaks (full-width at half-maximum height 0.06 ± 0.01 min). The limit of detection for TCS was 0.1 nM (2 fmol on column) with a linear dynamic detection range from 0.3 to 600 nM TCS. The method showed a very good accuracy and precision in spiked plasma samples (recovery rate 100 ± 15% of the spiked concentration, intrasample variation ≤ 5%, intersample variation ≤ 10%).

Mouse in Vivo Grip Strength. Three-month-old wild-type male C57BL/6 mice (~25 g) were acclimated to laboratory conditions for 2 d before grip-strength evaluation using a grip-strength meter with metal wire mesh (Columbus Instruments). Mice were randomly assigned to DMSO vehicle (n = 7) and 40 mg/kg TCS (n = 8) groups. To measure grip strength, mice were allowed to grab onto the wire mesh with all four limbs and gently pulled away from the meter by the base of the tail using a smooth horizontal motion. Before dating, baseline grip strength was assessed for each mouse over a 30-min period, with five readings performed every 10 min. Mice were dosed via intraperitoneal injection, with dose volume not exceeding 30 μL. The evaluator was blind to the dose received by each mouse. Following injection, the grip strength for each mouse was evaluated up to 1 h, with five readings performed every 10 min. Sham injections were performed on a separate group of seven mice, and grip strength was evaluated following the same time course. Baseline measurements for each mouse were averaged, excluding the two highest and two lowest readings. Postdose measurements were averaged and expressed as a percent of baseline for each mouse. Nonresponders to TCS were determined as P > 0.05 when comparing baseline and postdose mean grip strength by t test and excluded from final analysis (n = 1). Sham, vehicle, and TCS groups were compared via one-way ANOVA with Newman-Keuls posttest using Prism (GraphPad Software).

Swimming Behavior in Larval Fathead Minnow. Larval fathead minnow (A. franciscana) nauplii were exposed to 200 μM ammonium acetate and 0.1% acetic acid as solvent A and acetonitrile/water [95%/5% (vol/vol)] as solvent B. The flow rate for separation was set to 350 μL/min and the following gradient was used: 0.0–0.5 min isotropic 55% B; 0.5–0.7 min linear from 55% B to 100% B; 0.7–1.8 min isotropic 100% B and return to initial conditions at 1.9 min. TCS and its internal standard (IS) (2H5)-TCS were detected after negative ESI in selected reaction monitoring mode on the transitions of m/z 287/35 and m/z 292/35 with a dwell time of 50 ms. The instrument was operated with an ion-spray voltage of –4,500 V, using 25 psi curtain gas, 40 psi nebulizer gas, and 71 psi drying gas at a temperature of 500 °C and collision energy of –42 V.

Sample preparation was carried out by mixing mouse plasma with IS solution in ACN yielding a final IS concentration of 50 nM. Following mixing and centrifugation (14,000 × g for 4 min at 4 °C), 20 μL of the mixture were directly analyzed by online SPE-LC-MS.

TCS coeluted perfectly with the IS at a retention time of 1.51 ± 0.03 min in narrow peaks (full-width at half-maximum height 0.06 ± 0.01 min). The limit of detection for TCS was 0.1 nM (2 fmol on column) with a linear dynamic detection range from 0.3 to 600 nM TCS. The method showed a very good accuracy and precision in spiked plasma samples (recovery rate 100 ± 15% of the spiked concentration, intrasample variation ≤ 5%, intersample variation ≤ 10%).

Cherednichenko et al. www.pnas.org/cgi/content/short/1211314109
each swimming parameter. Data collected for provoked swimming analysis did not fit the assumption of equal variance for an ANOVA and therefore all data were assessed using a Kruskal-Wallis followed by a Dunn’s posttest. It should be mentioned that data were also assessed using an ANOVA blocked by time of exposure and showed consistent results; therefore, the more conservative results from the nonparametric analyses were used.

Isolation of Adult Mouse Ventricular Myocytes. Single-mouse free-wall left ventricular myocytes were isolated from 10- to 12- wk-old C57BL/6J mice as previously described (7, 8). In brief, mice were injected with 0.1 mL heparin (1,000 units/mL) and after 5 min anesthetized with intraperitoneal sodium pentobarbital (40 mg/kg). Hearts were quickly removed and placed in ice-cold Tyrode’s solution (NaCl 140 mM, KCl 5.4 mM, MgCl2 1 mM, Hepes 10 mM, and glucose 10, pH 7.4), cannulated under a dissecting microscope and mounted on a Langendorff apparatus. Perfusion of hearts was done with Tyrode’s solution gassed with 100% O2 at 37 °C under constant perfusion pressure (60 mmHg) and a flow rate of ~2 mL/min. After 5 min, solution was changed to 30 mL of Tyrode’s solution containing 13 mg collagenase (type 2, 322 units/mg; Worthington Biochemical Corporation) and 1 mg protease (type XIV, 4.5 units/mg; Sigma-Aldrich). Hearts were allowed from the Langendorff apparatus after 30–45 min of enzyme perfusion. Ventricular tissues were collected in high-K+ solution (K glutamate 120 mM, KCl 20 mM, MgCl2 1 mM, EGTA 0.3 mM, glucose 10 mM, and Hepes 10 mM, pH 7.4), and gently triturated with pipettes for 3 min. Because of the known electrophysiological heterogeneity in various regions of the heart, we used only left ventricular free-wall cells for our recordings. Cells were allowed to rest for 2 h before use. This isolation procedure yielded 60–80% of Ca2+ tolerant ventricular myocytes with clear striation.

Confocal Ca2+ Imaging of Mouse Ventricular Myocytes. Enzymatically isolated free-wall left ventricular myocytes were loaded with the Ca2+ indicator Fluo-4 (9, 10). Cells were field-stimulated at a frequency of 1 Hz (IonOptix). Confocal line-scan imaging was performed by using a Zeiss Pascal confocal microscope equipped with an argon laser (488 nm) and a 40×, 1.3 N.A. oil immersion objective lens. Line-scan images were acquired at sampling rates of 0.7 ms per line and 0.07 μm per pixel, with radial and axial resolutions of 0.4 and 1.0 μm, respectively. Ca2+ transients were expressed as the normalized local fluorescence (F/F₀), where F₀ refers to the fluorescence level before depolarization, as previously described (9, 10). Ca2+ signals were measured before and 20 min after perfusion of TCS (10 μM) to myocytes. Where appropriate, pooled data are presented as means ± SEM. Significant differences between groups were determined by t test.

Measurement of Cardiac L-Type Ca2+ Current. Whole-cell L-type Ca2+ currents were measured before and 20 min after perfusion of TCS (10 μM) to myocytes. Data analysis was carried out using custom-written software and commercially available PC-based spreadsheet and graphics software (OriginPro 7; OriginLab).

Preparation and Culture of Primary Myotubes and Adult Flexor Digitorum Brevis Fibers. Primary skeletal myoblasts were isolated from WT and dyspedic (ByRj-null) mouse neonates and expanded onto 96-well microclear plates (BD Falcon) coated with Matrigel (BD Biosciences), as previously described (13). Upon reaching 60% confluence, growth factor was withdrawn and the cells were allowed to differentiate into myotubes for 3–5 d in DMEM (Invitrogen) containing 5% heat-inactivated horse serum and 2 mM l-glutamine.

Flexor digitorum brevis (FDB) muscles were dissected from 3- to 6-mo-old wild-type male mice, and single myofibers were enzymatically isolated, as previously described (14). After isolation, the fibers were plated onto Matrigel-coated plates and cultured in DMEM containing 10% FBS and penicillin-streptomycin at 37 °C. Experiments were conducted within 12–40 h of plating.

Imaging of Primary Myotubes and Adult FDB Fibers. Ca2+ responses from myotubes and FDB fibers were evoked and measured as previously described (15). Briefly, myotubes or FDB fibers were loaded with the Ca2+ indicator Fluo-4 and imaged using an intensified charge coupled device camera with a 40× objective. Data were collected from 3 to 10 individual cells at ≥6 frames per second. TCS (0.5–10 μM) was delivered to the cells by bulk perfusion, and Ca2+ transients were evoked by electrical field stimulation using two platinum electrodes attached to opposite sides of the well and connected to a stimulator that delivered a range of frequencies (0.1–20 Hz). The cells were challenged by caffeine through a brief puff delivered by micropipette. For TCS pretreatment, myotubes and fibers were incubated for 24 h in serum-free DMEM. Frequency-amplitude measurements were curve-fit by nonlinear regression using Prism GraphPad Software and analyzed by two-way ANOVA with Bonferroni posttests. For certain experiments, 0.1–0.5% BSA was added to the buffer and perfused to myotubes in addition to TCS.

Store-operated Ca2+ entry (SOCE) and excitation-coupled Ca2+ entry (ECCE) measurements were performed as previously described (13, 16). To assess SOCE, myotubes were loaded with Fluo-4 and treated with thapsigargin through perfusion in a Ca2+-free buffer. After Ca2+ mobilization, 10 μM TCS was added to the perfusion buffer, and Ca2+ entry was measured through reintroduction of extracellular Ca2+. ECCE was assessed using Mn2+ quench of Ca2+-insensitive Fura-2 fluorescence, as well as increase in Ca2+-sensitive Fluo-4 fluorescence. For Mn2+ quench, cells were perfused with 500 μM extracellular Mn2+ and illuminated at the isosbestic excitation wavelength. After addition of 10 μM TCS to perfusion buffer, ECCE was induced by high-frequency electrical stimuli using two platinum electrodes fixed to the well and Ca2+ entry was measured by the rate of quench of Fura-2 fluorescence. Ca2+-mode measurement of ECCE required pretreatment of myotubes with 500 μM rydonine for 30 min before exposure to TCS. After introduction of 10 μM TCS to buffer, ECCE was induced by electrical stimuli and Ca2+ was assessed as the rise in Fluo-4 fluorescence.

Measurement of Skeletal L-Type Ca2+ Current. Pipettes were fabricated from borosilicate glass and had resistances of ~2.0 MΩ when filled with internal solution, which consisted of: Cs-aspartate 140 mM, Cs2-EGTA 10 mM, MgCl2 5 mM, and Hepes 10 mM, pH 7.4. The external solution contained: tetraethylammonium-Cl 145 mM, CaCl2 10 mM, tetrodotoxin 0.002 mM, and Hepes 10 mM, pH 7.4. Electronic compensation was used to reduce the effective series resistance (usually to <1 MΩ) and the time constant for charging the linear cell capacitance (usually to
< 0.5 ms). L-type currents were corrected for linear components of leak and capacitive current by digital scaling and subtraction of the average of 11, 30-mV hyperpolarizing pulses from a holding potential of −80 mV. Filtering was at 2 kHz (eight-pole Bessel filter; Frequency Devices) and digitization was at 10 kHz (L-type currents). Voltage-clamp command pulses were exponentially rounded with a time constant of 50–500 μs and a 1-s prepulse to −20 mV followed by a 25-ms repolarization to −50 mV was administered before the test pulse to inactivate endogenous Ca,3 and Na, channels. Cell capacitance was determined by integration of a transient from −80 mV to −70 mV using Clampex 8.0 (Molecular Devices) and was used to normalize current amplitudes (pA/pF). Each L-type current was corrected for linear contributions of leak and capacitive current by digital scaling and subtraction of the average of 11, 30-mV hyperpolarizing pulses from a holding potential of −80 mV. Filtering was at 2 kHz (eight-pole Bessel filter; Frequency Devices) and digitization was at 10 kHz (L-type currents). Voltage-clamp command pulses were exponentially rounded with a time constant of 50–500 μs and a 1-s prepulse to −20 mV followed by a 25-ms repolarization to −50 mV was administered before the test pulse to inactivate endogenous Ca,3 and Na, channels. Cell capacitance was determined by integration of a transient from −80 mV to −70 mV using Clampex 8.0 (Molecular Devices) and was used to normalize current amplitudes (pA/pF). L-type Ca,2+ currents were measured before and 15–20 min after perfusion of TCS (10 μM) to myotubes. All electrophysiological experiments were performed at room temperature (~25 °C).

Preparations of Membrane Fractions from Mouse Skeletal Muscle. Sarcoplasmic reticulum (SR) microsomes were isolated from mouse skeletal muscle tissue as described in ref. 15. Briefly, skeletal muscles from wild-type mice were homogenized in ice-cold buffer containing 200 mM sucrose, 5 mM imidazole, 0.01 mM phenylmethylsulfonyl fluoride, and 5 μg/mL leupeptin, pH 7.4. Homogenates were differentially centrifuged at 10,000 × g (20 min) and 110,000 × g (60 min). Pellets were resuspended in 200 mM sucrose and 10 mM Hepes, pH 7.4, and flash frozen and stored at −80 °C.

Radioligand Binding Assay. Radioligand binding assays with [3H]ryanodine and [3H]PN200 were performed as previously described (15, 17). Specific radioligand binding was assessed for 0–20 μM TCS. [3H]Ryanodine binding assays were carried out in optimal Ca,2+ (50 μM) with 2 nM radioligand, and [3H]PN200 binding was assessed with both 1 and 10 nM radioligand. Each experiment was performed in triplicate and on two independent skeletal muscle preparations. Nonlinear curve fitting was performed using Prism (GraphPad Software).

Fig. S1. TCS plasma levels following intraperitoneal administration to mice. Mice (vehicle: n = 3; TCS: n = 6–9) were exposed to 0–25 mg/kg TCS in DMSO via intraperitoneal injection. After 15 min, blood was collected and plasma TCS levels were determined by LC-ESI-MS. Error bars represent SEM.

Fig. S2. TCS impairs ECC in adult mouse FDB fibers. (A) Adult FDB fibers were stimulated by electrical field at 20 Hz or 0.1 Hz. Perfusion of 10 μM TCS lead to a decrease in calcium transient amplitude and the eventual complete loss of EC coupling. No appreciable increase in resting Ca²⁺ levels was observed. (B) Adult FDB fibers were incubated with control (n = 1,965) or 0.5 μM TCS (n = 2,239) in serum-free medium for 24 h at 37 °C. The 0.5 μM TCS significantly reduced the number of adult FDB fibers with ECC by 44.7 ± 8.6%. Error bars represent SEM. **P < 0.01, t test.
Fig. S3. Serum albumin mitigates—but does not completely eliminate—the effects of TCS on myotubes. Skeletal myotubes were perfused with 0 or 10 μM TCS in buffer with either 0.1% BSA (A–C) or 0.5% BSA (D–F). Without TCS, EC coupling was well-maintained over time in the presence of BSA (A and D). With 0.1% BSA, ECC failure occurred in 67% of the cells (B); the remaining cells retained partial ECC (C). The 0.5% BSA preserved ECC in 78% of the cells (F), yet several cells still exhibited severely reduced or complete loss of ECC (E). Serum albumin failed to prevent an increase in resting Ca²⁺ levels regardless of concentration (B, C, E, and F).

Fig. S4. SOCE is not affected by TCS. Skeletal myotubes were treated with 200 nM thapsigargin (TG) in Ca²⁺-free buffer to inhibit activity of the sarcoplasmic/endoplasmic reticulum Ca²⁺ ATPase (SERCA). This induced a mobilization of Ca²⁺ and a complete depletion of SR Ca²⁺ stores, as evidenced by a lack of response to caffeine (Caff). Note that after store depletion, 10 μM TCS was unable to elicit an increase in resting Ca²⁺ level. Reintroduction of extracellular Ca²⁺ in the presence of TCS initiated a massive Ca²⁺ influx normally seen in naive cells.